Навигация
Основные темы:
Главная
ул. Циолковского
Ферментальный катализ
Мембрана эритроцитов
Строение мембран
Применение аминокислот

Дополнительные темы:
Химия мембран
Реакция оксигенации
Ингибиторы синтеза белка
Спектры и спектральный анализ
Строение ДНК

Строение мембран

Строение мембран.
Важнейшее условие существования клетки, и, следовательно, жизни – нормальное функционирование биологических мембран. Мембраны – неотъемлемый компонент всех клеток.
Все биологические мембраны имеют толщину от 5 до 10 нм, содержат белки липиды, соотношение между которыми варьирует в зависимости от происхождения мембраны. Кроме того, в них присутствуют углеводы, неорганические соли, вода и ряд других соединений; в некоторых мембранах обнаружены следы РНК (до 0,1%). У млекопитающих мембраны содержат особенно особенно большое количество фосфолипидов и холестерола. В настоящее время общепринятой моделью строения мембран является жидкостно-мозаичная, предложенная в 1972 году С.Синджером и Дж.Николсоном.
Структурной единицей мембраны является фослолипидный бислой. Фосфолипиды – амфипатичекие молекулы, т.е. в одной молекуле имеются как гидрофильные, так и гидрофобные участки. Фосфолипидный бислой образуется за счет гидрофобного воздействия между цепями остатков жирных кислот, входящих в состав липидов. Он представляет собой листок, состоящий из 2 слоев фосфолипидов, причём их полярные головки обращенеы к воде, а цепи остатков жирных кислот формируют внутреннюю гидрофобную среду. При встряхивании фосфолипидов с водой они образуют шарообразные мицеллы, где цепи остатков жирных кислот направлены в сторону, противоположную гидрофильной поверхности.
Липидный бислой с обеих сторон покрыт белками. В соответсвии с жидкой мозаичной моделью мембраны сами липиды и некоторые белки способны передвигаться в плоскости бислоя.
Мембранные белки выполняют несколько функций:
1) они могут переносить молекулы через мембрану;
2) являются рецепторами для химических агентов ( таких, так гормоны);
3) через свои разветвленные углеводные цепи обеспечивают межклеточное взаимодействие, а также распознавание антигенов;
4) действуют в качестве ферментов;
Белки могут быть интегральными, прочно встроенными в мембрану или ассоциированными. Последние непрочно или обратимо связаны с мембраной и способны отцеплятся даже при мягких воздействиях. Интегральные белки могут был ковалентно связаны концевой карбоксильной группой белка с фосфолипидами мембраны. Многие интегральные белки нерастворимы в воде. Они погружены в мембрану и удерживаются там тремя основными силами:
1) ионными взаимодействиями с полярными головками;
2) гидрофобными взаимодействиями с внутренней липидной частью мембраны;
3) специфическими взаимодействиями с холестеролом и другими молекулами мембраны.
Большинство интегральных белков пронизывают липидный бислой и имеют полярные участки с двух сторон.
Новейшие данные, полученные методом рентгеноструктурного анализа, показали, что цепи мембранных белков сворачиваются, по-видимому так, что –спиральные и -структурные участки оказываются погруженными в гидрофобную область мембраны; находящиеся вне мембраны части молекулы образованы преимущественно неупорядоченными структурами.
У мембран различают наружную и внутреннюю стороны, которые в большинстве случаев имеют неодинаковый состав, то есть мембраны асимметричны. Липиды и белки, расположенные на наружной стороне плазматической мембраны, обычно имеют ковалентно связанные с ними углеводы. Внутренняя сторона мембраны и внутриклеточные мембраны, как правило, лишены углеводов. Углеводная часть представлена полисахаридами, включающими обычно не более 15 моносахаридных остатков, которые часто образуют разветвленные структуры. В плазмалемме эукариотических клеток часто обнаруживаются галактоза, манноза, фукоза, N-ацетилглюкозамин, N-ацетилгалактозамин, арабиноза, ксилоза, нейраминовая кислота. Гликолипиды представлены гликозилдиацилглицеринами (преимущественно в бактериальных мембранах) и гликосфинголипидами: цереброзиды, ганглиозиды и др. (в основном у эукариотических клеток).
Мембрана представляет собой динамическую структуру. Наиболее подвижным компонентом в ней являются липиды. Они довольно свободно двигаются в плоскости липидного слоя (латеральное перемещение), меняя своих “соседей” в среднем 106 раз /сек. Молекулы белков также могут перемещаться латерально в плоскости мембраны. Возможно также, что белковые молекулы вращаются вокруг перпендикулярных и параллельных плоскости бислоя осей, что может иметь большое значение при функционировании макромолекул и мембран в целом.
Однако белки распределены в мембране не статистически, образуя участки с различными функциями. Иначе говоря, белковые молекулы не абсолютно свободно перемещаются в плоскости мембраны, поскольку могут существовать взаимодействия между отдельными белковыми молекулами и, кроме того, между белками мембран и цитоскелетом клетки: структурными белками, микрофиламентами, микротрубочками, примыкающими к мембране изнутри. В свою очередь расположение белковых молекул в мембране оказывает влияние на распределение и ориентацию липидных молекул в зависимости от сродства конкретных белков и липидов.
Подвижность мембранных молекул в значительной мере зависит от состава жирных кислот. Более упорядоченной и стабильной является структура мембран, содержащая большое число насыщенных жирных кислот в фосфолипидах, менее упорядоченной – содержащая значительные количества ненасыщенных жирных кислот. При оптимальных для жизнедеятельности живых организмов температурах мембрана, как правило, имеет жидкокристаллическое состояние (промежуточное между жидким и твердым). Это состояние обусловлено прежде всего наличием в мембранах системы липид – белок – вода, формирующей различного типа упорядоченные структуры, обладающие в то же время определенной подвижностью. Такое состояние мембран оказывает существенное влиянием на их функционирование и объясняет большую чувствительность к различным внешним факторам.
Соседние клетки одной ткани должны сообщаться друг с другом для того, чтобы координировать свою жизнедеятельность и функционировать как целое в соответствии со спецификой ткани. Такое сообщение достигается с помощью специальных коротких “трубочек”, которые собраны в дискообразные структуры в местах так называемых щелевых контактов. Каждая трубочка состоит из двух цилиндрических белковых молекул – коннексонов. Молекула – коннексона частично погружена в клеточную мембрану, а ее выступающая часть способна связываться в межклеточном пространстве с коннексоном соседней клетки, так что образуется непрерывный канал, соединяющий внутренне пространство двух клеток.
Взято с сайта: Ролевые игры Волжском



Город Волжский - город моей мечты
 
Хостинг от uCoz