Навигация
Основные темы:
Главная
ул. Циолковского
Ферментальный катализ
Мембрана эритроцитов
Строение мембран
Применение аминокислот

Дополнительные темы:
Химия мембран
Реакция оксигенации
Ингибиторы синтеза белка
Спектры и спектральный анализ
Строение ДНК

Реакция оксигенации

Обратимое присоединение кислорода (оксигенация), позволяющее гемоглобину выполнять свою основную функцию переносчика, обеспечивается возможностью образовать прочные пятую и шестую координационные связи и перенести электрон на кислород не от железа (то есть окислить Fe2 +), а от имидазольного кольца проксимального гистидина. Это схематически изображено на рис. 1, б. Вместо молекулярного кислорода железо гема может присоединить окись углерода СО (угарный газ). Даже небольшие концентрации СО приводят к нарушению кислородпереносящей функции гемоглобина и отравлению угарным газом. Выше было сказано, что одна молекула гемоглобина содержит четыре субъединицы и, следовательно четыре гема, каждый из которых может обратимо присоединить одну молекулу кислорода. Поэтому реакцию оксигенации можно разделить на четыре стадии:
Hb + O2 _ HbO2
HbO2 + O2 _ Hb(O2)2
Hb(O2)2 + O2 _ Hb(O2)3
Hb(O2)3 + O2 _ Hb(O2)4
Прежде чем рассмотреть эту главную функциональную реакцию гемоглобина более детально, необходимо сказать несколько слов о мышечном гемоглобине - миоглобине. Этот красящий белок поперечнополосатых мышц представляет собой комплекс гема с "четвертушкой" глобина. Он содержит одну молекулу гема и одну полипептидную цепочку, состав и структура которой подобны составу и структуре b-субъединицы гемоглобина. Как и для гемоглобина, важнейшей функцией миоглобина является обратимое присоединение молекулярного кислорода. Эту функцию характеризует так называемая кривая оксигенации, связывающая степень насыщения гемоглобина кислородом (в процентах) с парциальным давлением последнего, (мм Hg).Типичные кривые оксигенации гемоглобина и миоглобина (при условии достижения химического равновесия) приведены на рис. 2, а, б. Для миоглобина кривая является гиперболой, как и должно быть в случае одностадийной химической реакции при условии достижения химического равновесия:
Мb + О2 _ МbО2 ,
где Мb - миоглобин.
Действительно, согласно закону действующих масс, константу равновесия реакции (2) можно записать в виде.Степень насыщения кислородом Y равна, очевидно. Последнее уравнение описывает прямоугольную гиперболу в координатах Y- . Уравнение (5) можно переписать в виде. Линейная анаморфоза кривой диссоциации в координатах [Y/(1 - Y )] - () позволяет оценить все важные характеристики процесса. На рис. 3, а уравнение (6) представлено в логарифмических координатах. Пересечение прямой с осью ординат дает значение константы равновесия реакции ассоциации миоглобина с кислородом (lg K ). Величина К -1 равна значению, при котором половина молекул Мb связана с кислородом (р1/2). Чем больше сродство миоглобина к кислороду, тем больше константа равновесия и тем ниже значение р1/2 . Совершенно другая картина возникает в случае гемоглобина. Кривая диссоциации имеет S-образную форму. Без кислорода молекулы гемоглобина обладают низким сродством к кислороду и равновесие реакции (1а) сдвинуто влево. Затем кривая становится круче и при высоких значениях практически сливается с кривой диссоциации миоглобина. М. Перутц [1] пишет, что распределение молекул кислорода по молекулам гемоглобина следует библейской притче: "Каждому, у кого есть, дай еще, и у него будет избыток; у того же, у кого нет, забери то немногое, что у него осталось". Это заставляет предположить, что между гемами одной молекулы гемоглобина существует некоторая связь, благодаря которой присоединение кислорода к одному гему влияет на присоединение кислорода к другому гему той же молекулы. Это явление было известно задолго до работ Перутца и установления структуры гемоглобина и механизма его реакции с кислородом. Оно получило название гем-гем взаимодействия. Физиологический смысл гем-гем взаимодействия очевиден. Сигмоидная форма кривой диссоциации создает условия максимальной отдачи кислорода при переносе гемоглобина от легких с высоким значением к тканям с низким значением . Для человека значения артериальной и венозной крови в нормальных условиях (T 37?C, pH 7,4) равны соответственно 100 и 40 ммHg. При этом (см. рис. 2, б ) гемоглобин отдает тканям 23% связанного кислорода (степень оксигенации меняется от 98 до 75%). При отсутствии гем-гем взаимодействия для одногемового миоглобина (рис. 2, а) эта величина не превышает 5%. Миоглобин поэтому служит не переносчиком, а депо кислорода и отдает его мышечной ткани лишь при резкой гипоксии, когда насыщение ткани кислородом падает до недопустимо низкого значения. Логарифмическая анаморфоза кривой диссоциации гемоглобина человека представлена на рис. 3, б. В этом случае начало кривой представляет собой прямую под углом 45? к координатным осям, как и для миоглобина: первые молекулы кислорода соединяются в основном с молекулами гемоглобина, еще не содержащими кислорода, и гемы таким образом оксигенируются независимо. Это свидетельствует о том, что гем-гем взаимодействие обусловлено не просто наличием нескольких гемов в молекуле, а тем, что после оксигенации одного гема меняются условия оксигенации других гемов той же молекулы. Затем наклон кривой увеличивается. Тангенс угла максимального наклона получил название коэффициента Хилла (n), который отражает степень кооперативности процесса. Для миоглобина n = 1, а для гемоглобина человека (в норме) n ~ 3. Вблизи области полного насыщения гемоглобина кислородом наклон кривой снова становится равным 45? (большинство молекул гемоглобина либо не содержат свободных гемов, либо имеют лишь один гем, способный присоединить кислород).
Взято с сайта: http://www.bestrpg.org.ru/



Город Волжский - город моей мечты
 
Хостинг от uCoz